4D Curves and How to Visualize Them

Oras Phongpanangam

3D curves vs. 4D curves

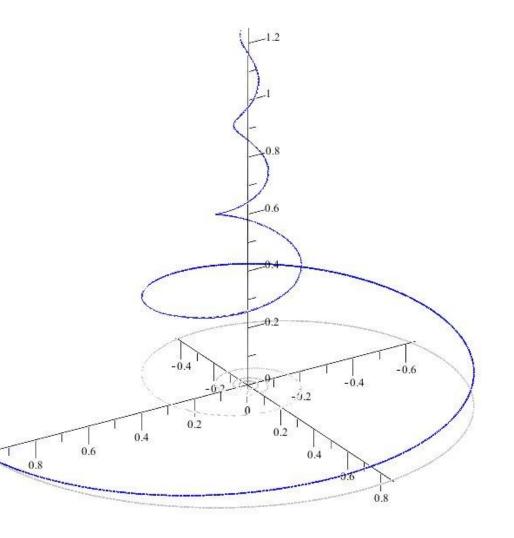
Motivation: visualizing the higher dimensions

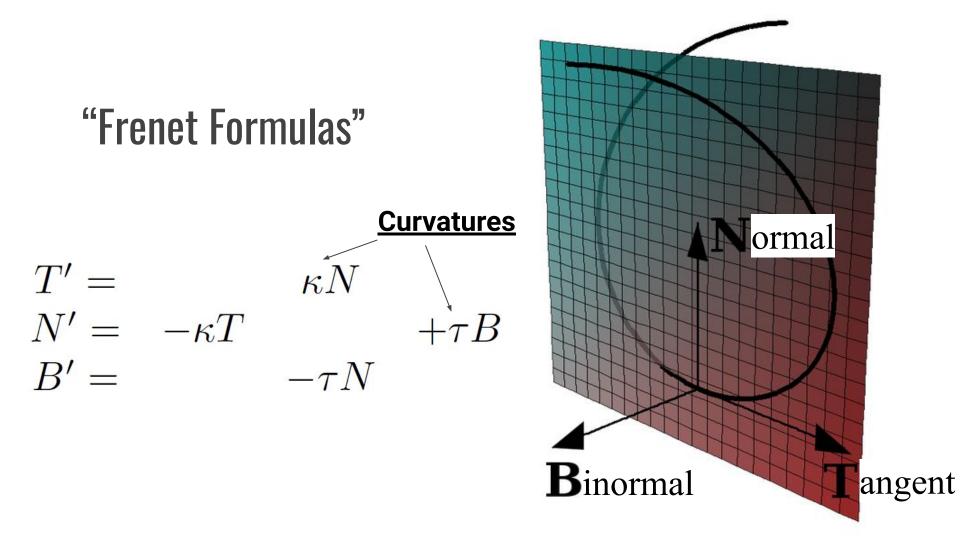
- Generalize 3D method to 4D
- Apply method to 4D helix
- Visualize in various ways

Curves Basics in 3D

3D Curves

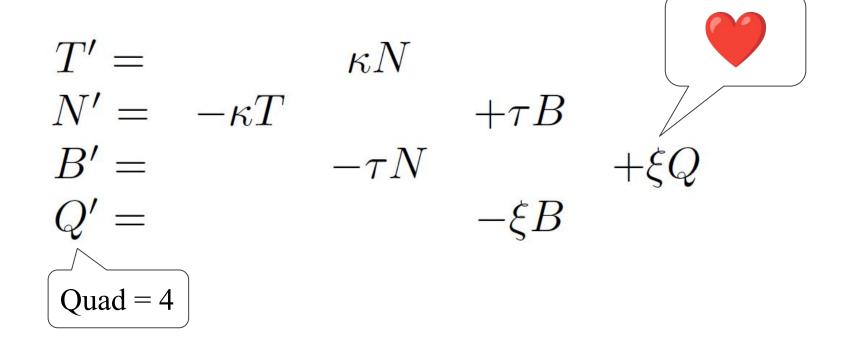
$\vec{\alpha} : \mathbb{R} \to \mathbb{R}^3$ $\vec{\alpha}(s) = (x(s), y(s), z(s))$



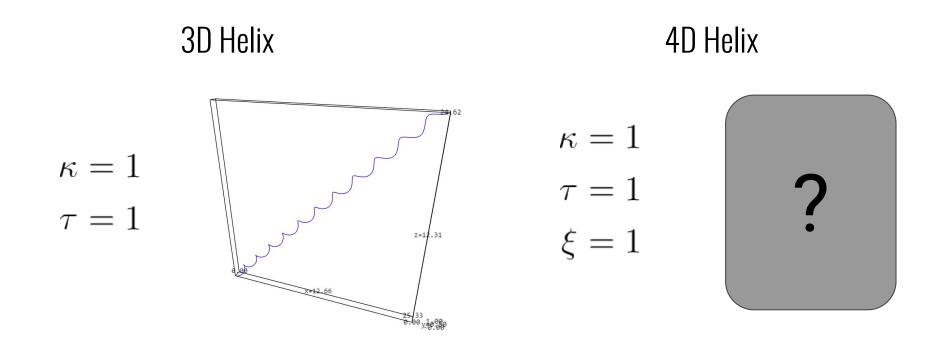


How can we take this to 4D?

4D Frenet Frame



Case Study: Helix



First, get positions (α)

Solve Frenet formulas differential equations Initial conditions: $\alpha(0) = (0, 0, 0, 0)$ T(0) = (1, 0, 0, 0)N(0) = (0, 1, 0, 0)B(0) = (0, 0, 1, 0)Q(0) = (0, 0, 0, 1)

Symbolic Computation with

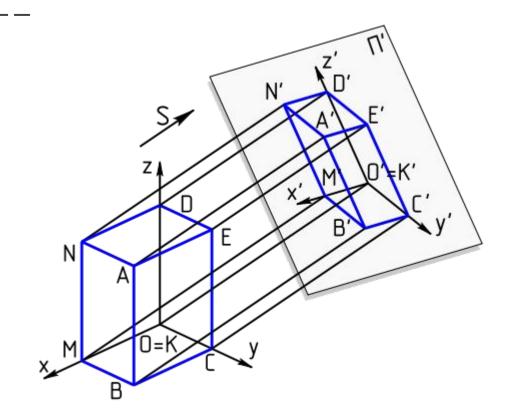
-1/40*((sqrt(10)*(2*(2296233858251526899759026455071468476208619822485329910849086495032199400949535180669400125278224340875248 2747606316867419852969616917142307469127639597543857018184386873729622191291768932550084105878225566352543460625111980982838576 9632540777016333278408186014700410524147996066304767183367876701530379943684028332181745935841077306843435691533979663681970242 321*sqrt(5)*sqrt(2)*sqrt(-1/2*sqrt(5) + 3/2) - 51345349992870305348052442256932767909797402853196257965549375416050035490557637 5550343288687883829242499639176447302105330036240960558351930764892197077875894740341406210731360517325213123289720275842951515 0843255712033373203765025374519433854413283623350606766903200265232242444783874055231701458703879563096668178058490312629060324 47914906362669581795447276198*sart(2)*sart(-1/2*sart(5) + 3/2))*sart(sart(5) + 3) + (175416657546755016447183513952112863764611 9182136363935992321943491594653792841786504767488955834730200748432517422039172655528475469559172933089369908484398158051902000 0115730522142785485321280290050381547549197824755002210910865477144567894560767147288949736741091154592076395443591414458045995 8720751874742418178739388776260325888082392168239269409250463450765*sqrt(5)*sqrt(2)*sqrt(-sqrt(5) + 3) - 3922435706603457105620 6004017224879918961217435322278354193801496540136424196153631632980342453931728987478014902606294499746024203581794041883829461 1356434833311804874945712971987387192742364955533617576227625803682354412911987578764193126271242318694964251956568907458829692 401911326299730126929959264150508858792508817414583331563126566261418110426976490616989*sqrt(2)*sqrt(-sqrt(5) + 3))*sqrt(1/2*sq rt(5) + 3/2)) - 4*(229623385825152689975902645507146847620861982248532991084908649503219940094953518066940012527822434087524827 4760631686741985296961691714230746912763959754385701818438687372962219129176893255008410587822556635254346062511198098283857696 3254077701633327840818601470041052414799606630476718336787670153037994368402833218174593584107730684343569153397966368197024232 1*sart(5)*sart(-1/2*sart(5) + 3/2) - 513453499928703053480524422569327679097974028531962579655493754160500354905576375550343288 6878838292424996391764473021053300362409605583519307648921970778758947403414062107313605173252131232897202758429515150843255712 0333732037650253745194338544132836233506067669032002652322424447838740552317014587038795630966681780584903126290603244791490636 2669581795447276198*sqrt(-1/2*sqrt(5) + 3/2))*sqrt(sqrt(5) + 3) - 2*(1754166575467550164471835139521128637646119182136363935992 3219434915946537928417865047674889558347302007484325174220391726555284754695591729330893699084843981580519020000115730522142785 4853212802900503815475491978247550022109108654771445678945607671472889497367410911545920763954435914144580459958720751874742418 178739388776260325888082392168239269409250463450765*sart(5)*sart(-sart(5) + 3) - 3922435706603457105620600401722487991896121743 5322278354193801496540136424196153631632980342453931728987478014902606294499746024203581794041883829461135643483331180487494571 2971987387192742364955533617576227625803682354412911987578764193126271242318694964251956568907458829692401911326299730126929959 264150508858792508817414583331563126566261418110426976490616989*sqrt(-sqrt(5) + 3))*sqrt(1/2*sqrt(5) + 3/2))*sin(1/2*sqrt(2)*s* sqrt(sqrt(5) + 3)) + (sqrt(10)*(17541665754675501644718351395211286376461191821363639359923219434915946537928417865047674889558 450FF0473033003500004043004F00F400300044F730F3044370F40F304300050304F47F404070347F

Numerical Integration (still with

]]	0.0000000e+00	0.0000000e+00	0.0000000e+00	0.0000000e+00]
[2.95540287e-01	4.43300481e-02	4.43959291e-03	3.34472398e-04]
[5.65268584e-01	1.69518649e-01	3.40998621e-02	5.20889396e-03]
•				
Ι	5.86628476e-01	1.36167910e+00	3.05968755e-01	2.19642803e+00]
[4.63487787e-01	1.46542972e+00	6.01512345e-02	2.25097471e+00]
Ī	3.04547010e-01	1.59703629e+00	-1.55509262e-01	2.23556356e+00]]

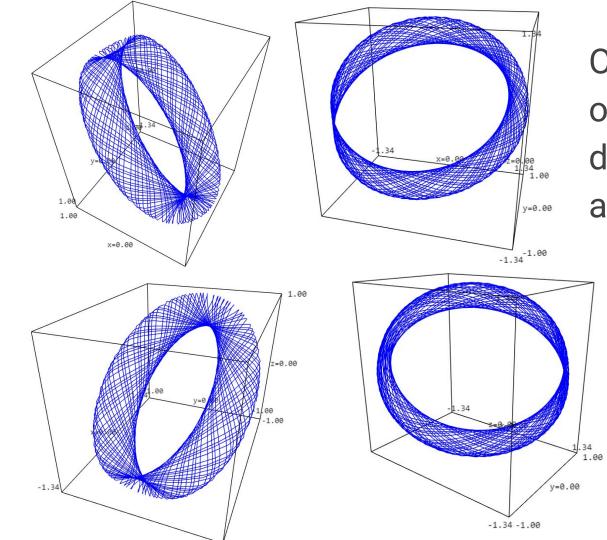
How to visualize this thing?

Technique 1: Orthogonal Projections



3D Object \rightarrow 2D Shadows

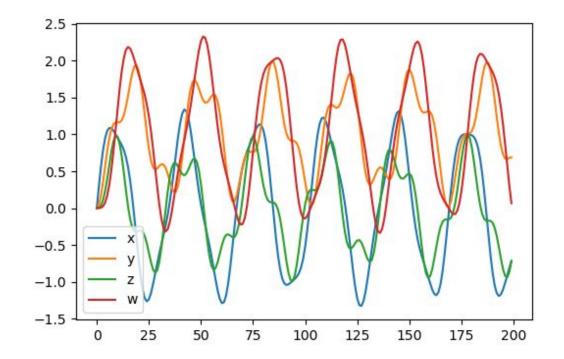
4D Object \rightarrow 3D Shadows



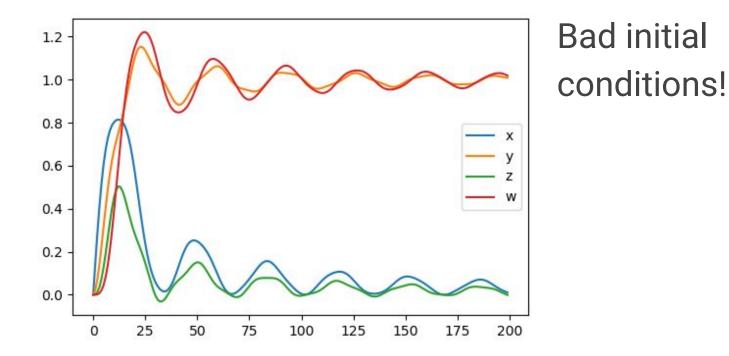
Only see 3 out of 4 dimensions at a time

Technique 2: Look at the Graph

4 dimensions at once!



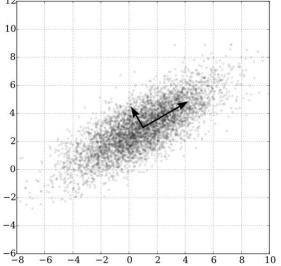
2.1: Center of Mass Plot



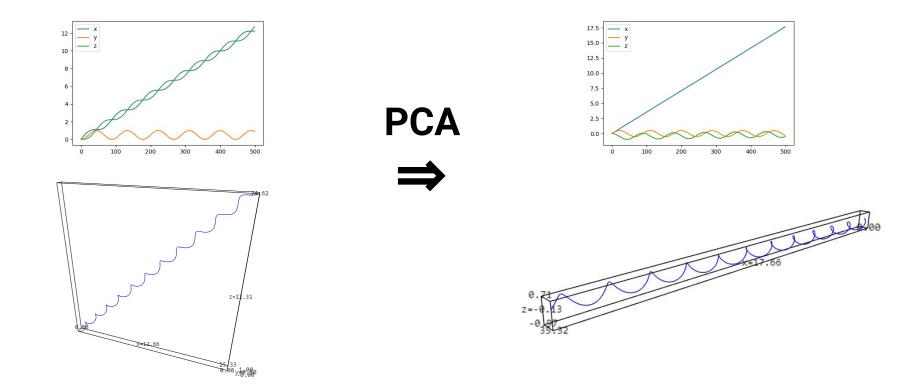
Technique 3: Principal Component Analysis (PCA)

Finding a basis that maximizes variances along the basis vectors

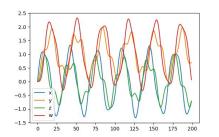
 \rightarrow A "nice" frame to view the object from

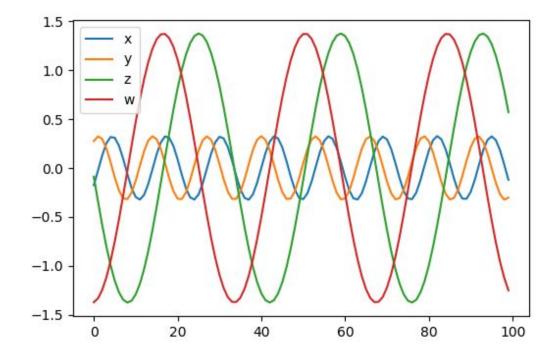


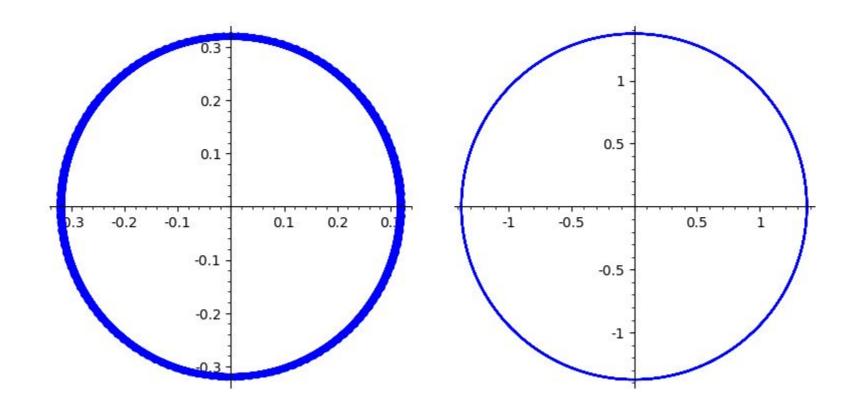
3D Example



4D PCA







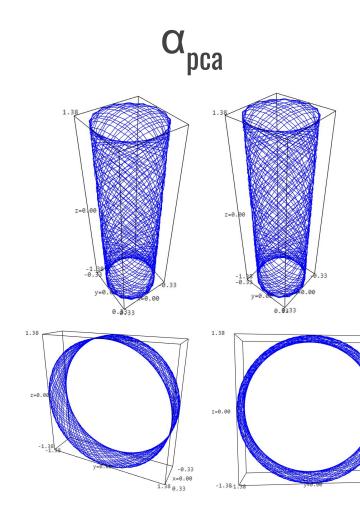
\Rightarrow "Flat Torus"

$$\vec{x}(u,v) = (r_1 \cos(u), r_1 \sin(u), r_2 \cos(v), r_2 \sin(v))$$

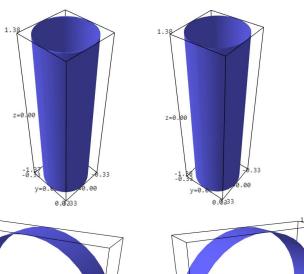
For us

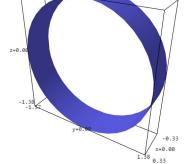
_ _ _

r₁ = 0.327
r₂ = 1.376



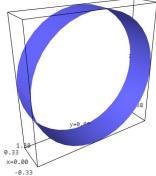
Flat Torus





1.38

0.33 x=0.00 ..380.33



Summary

Several numerical techniques to visualize 4D

- Numerical integration
- Orthogonal projections
- Graph plotting: positions and CMs
- PCA

Pros

- Computationally cheap
- Very visual
- Adaptation to a different curve is trivial

Cons

- Not mathematically rigorous
- Not guaranteed to work

Questions?